DNA Topology and the Initiation of Virus DNA Packaging.

نویسندگان

  • Choon Seok Oh
  • Jean Sippy
  • Bridget Charbonneau
  • Jennifer Crow Hutchinson
  • Olga Esther Mejia-Romero
  • Michael Barton
  • Priyal Patel
  • Rachel Sippy
  • Michael Feiss
چکیده

During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase's small subunit (TerS). The large terminase subunit (TerL) contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead's portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-molecule packaging initiation in real time by a viral DNA packaging machine from bacteriophage T4.

Viral DNA packaging motors are among the most powerful molecular motors known. A variety of structural, biochemical, and single-molecule biophysical approaches have been used to understand their mechanochemistry. However, packaging initiation has been difficult to analyze because of its transient and highly dynamic nature. Here, we developed a single-molecule fluorescence assay that allowed vis...

متن کامل

Structural and functional studies of the phage Sf6 terminase small subunit reveal a DNA-spooling device facilitated by structural plasticity.

In many DNA viruses, genome packaging is initiated by the small subunit of the packaging terminase, which specifically binds to the packaging signal on viral DNA and directs assembly of the terminase holoenzyme. We have experimentally mapped the DNA-interacting region on Shigella virus Sf6 terminase small subunit gp1, which occupies extended surface areas encircling the gp1 octamer, indicating ...

متن کامل

A dual role of the putative RNA dimerization initiation site of human immunodeficiency virus type 1 in genomic RNA packaging and proviral DNA synthesis.

In retroviruses, the genomic RNA is in the form of a 60S-70S complex composed of two identical genome-length RNA molecules tightly associated through numerous interactions. A major interaction, called the dimer linkage structure, has been found near the RNA 5' end and is probably involved in the control of translation, packaging, and recombination during proviral DNA synthesis. Recently, a smal...

متن کامل

A common topology for bacterial and eukaryotic transcription initiation?

DNA supercoiling is a major regulator of transcription in bacteria. Negative supercoiling acts both by promoting the formation of nucleoprotein structures containing wrapped DNA and by altering the twist of DNA. The latter affects the initiation of transcription by RNA polymerase as well as recombination processes. Here, we argue that although bacteria and eukaryotes differ in their mode of pac...

متن کامل

Analysis of herpes simplex virus type 1 DNA packaging signal mutations in the context of the viral genome.

The minimal signal required for the cleavage and packaging of replicated concatemeric herpes simplex virus type 1 (HSV-1) DNA corresponds to an approximately 200-bp fragment, Uc-DR1-Ub, spanning the junction of the genomic L and S segments. Uc and Ub occupy positions adjacent to the L and S termini and contain motifs (pac2 and pac1, respectively) that are conserved near the ends of other herpes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PloS one

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 2016